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Preface

This monograph aims to provide a concise overview of various aspects of appoint-
ment planning in healthcare, more specific in outpatient clinics and diagnostic facil-
ities. The reader is provided with a basic overview of relevant mathematical models
and simple queuing theory calculations that support the development and improve-
ment of appointment systems. Access time and waiting list management is dis-
cussed, followed by guidelines for scheduling of appointment slots, specific appoint-
ment systems, and a set of rules that help the reader to improve clinic operations.
The last chapter discusses future challenges related to the topic. This monograph is
written for both operations research professionals with an interest in healthcare and
healthcare professionals with an interest in appointment planning.

Laag-Soeren, The Netherlands Maartje E. Zonderland
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Chapter 1
Introduction

This chapter introduces relevant concepts and themes, related to appointment
planning in healthcare, with a focus on outpatient clinics and diagnostic facilities.

1.1 Typical Outpatient Clinics and Diagnostic Facilities

The most important feature of an outpatient clinic (or ambulatory care facility) is
that it provides care in an ambulatory care setting. This basically means that patients
follow the route Home → Outpatient clinic → Home.

Outpatient clinics are usually organized around a single specialty (Gynecol-
ogy, Ophthalmology, etc.) or around a certain disease or symptoms (for example,
sleeping disorders). In the latter case these clinics are usually multidisciplinary,
which means that several specialties are involved. Common activities carried out
at outpatient clinics are intakes, treatment and follow-up of patients. Simple diag-
nostic activities such as blood withdrawal or performing ECG tests are often also
planned here.

The term “outpatient clinic” is diffuse; sometimes, it is used to refer to an entire,
physical clinic. For example: “the Gynecology and Urology outpatient clinic is
situated in building A and opens every day from 8AM-5PM”. In other cases it
is used to refer to a specific time interval in which one or more medical professionals
are planned for consultations, sometimes even for a specific disease. For example:
“doctor B, Urologist, is available for consultations regarding prostate cancer each
Tuesday and Friday from 1–5PM.” In this monograph, the term “outpatient clinic”
refers to both entities. With the mathematical tools provided it is possible to develop
appointment systems for the entire clinic or only a part of it (i.e., for a specific
physician, a specific day, and so on).

At diagnostic facilities, and some outpatient clinics, not only outpatients but also
inpatients (patients currently admitted in the hospital) and patients from the emer-
gency department (ED) are examined. In the case of outpatient clinics this usu-
ally involves inpatients requiring a minor procedure which cannot be carried out at

M.E. Zonderland, Appointment Planning in Outpatient Clinics
and Diagnostic Facilities, SpringerBriefs in Health Care Management and Economics,
DOI 10.1007/978-1-4899-7451-8 1, © The Author 2014
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2 1 Introduction

the nursing ward. Diagnostic tests are usually performed at a centralized diagnostic
facility; only large EDs have their own diagnostic equipment. Examples of diagnos-
tic tests are X-rays, magnetic resonance imaging (MRI scan), computed tomography
(CT scan), and position emission tomography (PET scan). The time required to per-
form a diagnostic test varies from very short (X-ray; usually 5–10 min including
positioning of the patient) to quite long (MRI scans can easily take up to 1.5 h).
Skilled staff is required to operate the equipment.

The planning of diagnostic tests is usually quite involved; this is related to
the availability and skills of staff (technicians can operate only a limited number
of machine types), variations in patient demand, patient mix and arrival patterns,
variation in duration of the tests, switch-over times if a different type of test is
planned on the machine, and cohesion with care processes at other hospital depart-
ments (for instance, when the MRI scan is part of a care pathway organized around
a certain type of disease or patient). An additional complicating factor in academic
hospitals is the usage of equipment for research activities.

1.2 Patient Types

Two different patient type classifications are introduced. The first classification is
based on urgency, the second on admission status.

1.2.1 Patient Classification Based on Urgency

Roughly, three different patient types can be distinguished when patients are clas-
sified using urgency as a criterion. The first type regards elective patients; for
these patients their treatment or consultation can be planned some time in advance.
The second type considers urgent patients. These patients cannot be planned in
advance and require immediate care upon arrival at the hospital, where the ma-
jority of urgent patients enter the hospital through the ED. The third type includes
patients who cannot be included in either the elective or the urgent category. These
patients are given the semi-urgent (or semi-elective) status. The exact definition of
this patient type may vary per country, hospital, and even hospital department, but
in general these patients do not require immediate treatment upon arrival, but do
require treatment within a certain amount of time, for instance within a day, a week,
or 2 weeks. Most elective patients will ultimately evolve into semi-urgent or even
urgent patients if treatment is extensively prolonged.
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1.2.2 Patient Classification Based on Admission Status

As mentioned earlier, outpatients usually follow the route Home → Outpatient clinic
→ Home. Inpatients are admitted at a nursing ward, their admission including at
least one overnight stay. However, this, historically, clear distinction between in-
and outpatients is not so evident anymore. Lately, a shift from inpatient to outpatient
care has been emerging, where an increased number of patients are treated in an
outpatient setting. Even surgical procedures for which extensive hospitalization was
required in the past are now performed in so-called Short Stay Units, where the
entire admission, treatment, and discharge process are planned on a single day. Also,
mixed forms of in- and outpatient care are evolving, for example in which the patient
is treated at an outpatient clinic for two consecutive days and stays overnight in
a “care hotel.” Thus, whether a patient is classified as an in- or an outpatient is
also a managerial decision. An additional entrance route is through the emergency
department. These patients are, at the start of their care trajectory, usually referred
to as emergency patients. Once they are admitted at a regular ward, they become
inpatients.

1.3 Planning Types

Patients can be planned for a single consultation, treatment, or test in two ways:
they can be given an appointment or enter the clinic within a pre-specified time
frame whenever they want. The latter is referred to as “walk-in.” An appointment
basically states the date and time the patient is expected. Usually a time slot is
reserved for the patient, although it is not uncommon to reserve a single time slot
for multiple patients. This is called over-booking.

Since appointments can be planned by the clinic, the clinic has maximal influence
on the distribution of patient arrivals over the day and day of the week. If an appoint-
ment system is well organized, patients receive treatment shortly after arrival and
the care provider’s work pressure is more or less constant. However, we probably
all know many examples of clinics where this is not the case.

In a walk-in clinic, the patients arrive ad hoc, or randomly. The advantage of this
is that patients can, to a great extent, decide when they visit the clinic. Also, they
can combine this visit with visits to other hospital departments. A huge disadvantage
of patients walking in, however, is that the usually strong fluctuating arrival stream
can result in an overcrowded clinic, leading to long waiting times, high peaks in
care provider’s working pressure, and patients leaving without treatment (blocking).
On other moments of time the waiting room will be practically empty. These issues
will be discussed extensively in Chaps. 5 and 7, together with tips and tricks to
organize a walk-in clinic such that waiting times and blocking are reduced and the
care provider’s working pressure is leveled.
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1.4 Two Important Concepts: Access and Waiting Time

Next to the medical aspects of the treatment, two concepts are of interest for patients:
access time and waiting time. Access time refers to the time interval between the
appointment request and the day of the actual appointment. Access time is usually
measured in days, or even weeks, and is closely related to waiting lists. If the waiting
list contains 80 patients who are treated on order of arrival, and each week 8 patients
are treated, then the access time is 10 weeks (80 patients divided by 8 patients per
week).

Waiting time is defined as the time the patient spends at the clinic before the
treatment, consultation, or test starts. It is usually measured in minutes or even
hours. Suppose the appointment is scheduled to start at 10 a.m., and actually starts at
10:15 a.m., then the waiting time is 15 min. It is not uncommon that patients arrive
too early for their appointment. This extra time is usually not considered as waiting
time by clinic management; however, it can be perceived as such by patients. See
also Fig. 1.1.

Patient arrives
at clinic

Patient
request

Consultation,
treatment or

test

The same day

Starting
time

Waiting
time

Walk-in

Patient arrives
at clinic

Patient 
request

Consultation, 
treatment or 

test

≥ 1 day

Waiting
time

Appointment Planning

Access
time

Actual 
starting time

Planned
starting time

Fig. 1.1 Access and waiting time

1.5 Common Appointment Systems

Most appointment systems are quite simple. First a time frame is defined in which
the appointments should be planned (for instance, 9 a.m.–1 p.m.). Then the time
interval (4 h in this case) is divided into slots of equal length, usually 5, 10, 15, 20,
or 30 min. The usage of 5-min multiples is motivated by psychological and technical
factors. In most appointment planning software only appointment slots with a length
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which is a multiple of 5 min can be defined. Also, for both patients, administrative
and medical staff it is hard to work with appointments which are, for instance, 12
or 18 min.

After defining the slot length, patient types are specified. Next to the classifi-
cations based on urgency and admission status, additional criteria such as “new
patient” or “check-up” are used. Sometimes multiple patients are planned for the
first slot, so that the risk of idle time (time the care provider is waiting for patients
to arrive) is minimized. This originates from the famous Bailey–Welch rule [1],
developed already in 1952. For some patient types double slots are booked. It is
quite common to block time slots for specific patient types, especially at diagnostic
facilities. However, this introduces a lot of inflexibility and should be avoided as
much as possible (this will be discussed in Chaps. 5 and 7).

1.6 Hierarchical Decision Making

Day-to-day patient planning involves operational decisions. All other decisions
mentioned in the previous paragraph are tactical. The strategical decisions (see [2]
for a discussion of planning and control in healthcare) that should precede the tac-
tical and operational level are often neglected. Next to the weeks and days of oper-
ation and the opening hours, clinic and hospital management should also consider
the distribution of patients over medical specialties and individual care providers.
Furthermore, the distribution of physical space over specialties and individual care
providers should be subject of discussion and not be based on historical privileges
(see also [3] for a discussion on planning and control decisions in ambulatory care
facilities). Also, on a meta level the distribution of patients over hospitals and hos-
pital locations is becoming more and more a point of discussion. From a financial,
societal, and medical perspective it is simply not acceptable anymore to provide a
complete supply of care in each hospital.

Figure 1.2 shows an example of decisions, from a strategical to a tactical and
operational level, to consider during the development of an appointment system.
Important performance measures that should influence these decisions are patient
access and waiting time, and care providers idle time and work pressure. In the
remainder of this book we show how mathematical modeling can support the
development of appointment systems (Chaps. 2 and 3). We also provide practical
guidelines related to access time and waiting list management (Chap. 4), schedul-
ing of appointment slots (Chap. 5), specific appointment systems such as advanced
access and walk-in (Chap. 6), and the improvement of clinic operations (Chap. 7).
Chapters 2 and 3 provide mathematical theory to support the topics discussed in later
chapters. The reader may choose to omit these chapters and use them, if desired, at
a later point for reference.
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Chapter 2
Mathematical Models for Appointment Planning

Up to date, a vast amount of theoretical work has evolved around the subject of
appointment planning, where the majority of literature appeared in the last 10–15
years. It goes beyond the scope of this book to provide a complete overview,
especially since there are already several excellent review articles available. The
studies in [2, 5, 7] provide good starting points for those interested. In this chapter
we use the taxonomy as defined in [7] to provide a brief introduction to the most
commonly used mathematical models in appointment planning. The taxonomy clas-
sifies literature on outpatient clinics, or ambulatory care services, using a two-
dimensional system. The first dimension involves the planning decision and the
hierarchical level in the decision-making process: strategic, tactical, offline oper-
ational, and online operational. All steps from the roadmap introduced in Chap. 1
of this book (Fig. 1.2) are considered, together with additional decisions such as
facility layout, patient routing, staff-shift scheduling, and staff-to-shift assignment.

The second dimension of the taxonomy in [7] considers the mathematical method
used. In the next sections we discuss three mathematical modeling methods: com-
puter simulation, Markov decision processes, and queuing theory. All these methods
have stochastic elements. This means that uncertainty is taken into account by in-
troducing random variables. A random variable has a set of possible values, each
associated with a certain probability. For example, the outcome of rolling a dice is
a random variable with possible outcomes 1–6, each with probability 1

6 . In a health-
care setting, the number of patients calling for an appointment on Monday can be
modeled using a random variable, just as the length of a consultation. Due to the
high variability that is usually observed in healthcare settings, introducing stochas-
ticity in the modeling process is very important to obtain valuable and reasonable
results.

M.E. Zonderland, Appointment Planning in Outpatient Clinics
and Diagnostic Facilities, SpringerBriefs in Health Care Management and Economics,
DOI 10.1007/978-1-4899-7451-8 2, © The Author 2014
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10 2 Mathematical Models for Appointment Planning

2.1 Computer Simulation

Computer simulation, or simulation, is a widely used approach to study healthcare
problems (see, e.g., the review articles [1, 8]; see [10, 12] for a generic introduction
to simulation). The system which is studied is represented by developing a simula-
tion model. Probability distributions and/or random number generators are used to
mimic the behavior of key elements in the system. Not only commercial but also
open source simulation software packages allow the modeler to carry out numerical
experiments where the system’s behavior is simulated over a certain period of time.
Due to the stochastic elements introduced by the probability distributions and ran-
dom numbers, the system’s behavior will be different for each experiment, even
though the input variables are the same. Results are obtained by computing a
large number of experiments and then calculating the average values and standard
deviations of the outcome variables.

Simulation allows for extensive scenario analysis, although the inclusion of var-
ious scenarios in the software can be very time consuming. It is, however, a very
valuable tool since it allows the modeler to make a representation of the problem
which is very close to reality. This is at the same time one of the major drawbacks
of simulation; since almost anything can be modeled, it is very tempting to do so.
As a result, sometimes the focus moves from making a thorough analysis of a prob-
lem to making a good as possible representation of the problem in the simulation
software. Another drawback is that usually a large amount of data and computation
time is required [4]. With regard to appointment planning, simulation is typically
used to evaluate appointment schedules (see, e.g., [3, 6]).

2.2 Markov Decision Processes

A Markov decision process (see [11] for an introduction) can be used to model a
system where (it can be assumed that) events which occurred in the past (i.e., before
the system reached the current state) do not influence the sequence of events in the
future: the so-called Markov property. Therefore, Markov processes are commonly
used to model systems where the state of the system partially or completely depends
on chance. The main goal of a Markov decision model is to determine an optimal
policy for a given problem, for instance the number of semi-urgent surgeries to
schedule this week, given the expected demand for semi-urgent surgeries next week
[14], or the number of appointment patients to schedule given the expected demand
of walk-in patients [9]. In both cases it is assumed the number of this week’s patient
arrivals is not influenced by the number of patients who arrived last week (so the
Markov property is satisfied). Note that the formulation of a Markov model requires
in-depth mathematical knowledge.
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2.3 Queuing Theory

Queuing theory (see [13] for an introduction) is a common tool to analyze waiting
times and service levels in service systems. It is, for example, used to determine
the number of operators in call centers, given certain performance measures such
as the number of incoming calls that have to wait. A queuing model in a health-
care setting usually consists of patient arrival and service processes, the number
of servers (for instance, the number of doctors working at an outpatient clinic),
and the service discipline (for example, first come, first serve; see Chap. 3 for an
explanation of the aforementioned concepts). Simple queuing models are easy to
analyze; however, for state-of-the-art queuing models, as well as with Markov deci-
sion processes, advanced mathematical skills are required. This especially involves
non-steady state analysis (in this type of queuing models it is not assumed, as
opposed to other (steady state) queuing models, that the service and arrival processes
are homogeneous in time). A queuing model can be time consuming to formu-
late, but subsequently scenario and bottleneck analysis can be performed quite fast
and easy.

2.4 Wrap-up

Many work has been done on appointment planning in healthcare. However, there
is still a large gap between theory and practice. Often, researchers solve a fictitious
problem instead of a real-world problem from a healthcare organization. Even if a
real problem is used it is sometimes unclear whether the solution has been imple-
mented, and even more important, if it worked. This is related to several issues. First
of all, the people in the hospitals experiencing the problem (in this case appointment
planners, doctors, outpatient clinic secretaries, and so on) usually do not have access
to operations research specialists. Second, operations research specialists working
at universities often do not have access to healthcare organizations. Fortunately, sev-
eral initiatives and operations research in healthcare groups have evolved over the
last decade worldwide. But there is still a long way to go. Implementation of change
and different working routines can, as in many other industries, be very challenging
in healthcare, and deserves more attention.

One of the aims of this book is to provide a set of tools to improve appoint-
ment planning. All three methods explained in this chapter require a certain amount
of mathematical knowledge and modeling time. However, queuing theory also
provides possibilities for simple, hand-on analysis of important questions that come
across in appointment planning. Therefore the next chapter introduces basic queuing
theory concepts, followed by Chaps. 4–7 which describe these possibilities.
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Chapter 3
Basic Queuing Theory

In this chapter we introduce basic elements from queuing theory. This chapter is
written for those with a deeper (theoretical) interest in queuing theory. The reader
can also skip this part and use it for reference purposes only. The majority of the
text in this chapter appeared previously in [13].

3.1 Some General Queuing Concepts

A queue can generally be characterized by its arrival and service processes, the
number of servers, and the service discipline (Fig. 3.1). The arrival process is spec-
ified by a probability distribution that has an arrival rate associated with it, which
is usually the mean number of patients who arrives during a time unit (e.g., min-
utes, hours, or days). A common choice for the probabilistic arrival process is the
Poisson process, in which the inter-arrival times of patients are independent and
exponentially distributed.

The service process specifies the service requirements of patients, again using
a probability distribution with associated service rate. A common choice is the
exponential distribution, which is convenient for obtaining analytical tractable
results. The number of servers in a healthcare setting may represent the number of
doctors at an outpatient clinic, the number of MRI scanners at a diagnostic depart-
ment, and so on. The service discipline specifies how incoming patients are served.
The most common discipline is first come first serve (FCFS), where patients are
served in order of arrival. Some patients may have priority over other patients. This
can be such that the service of a lower priority patient is interrupted when a higher
priority patient arrives (preemptive priority), or the service of the lower priority
patient is finished first (non-preemptive priority).

M.E. Zonderland, Appointment Planning in Outpatient Clinics
and Diagnostic Facilities, SpringerBriefs in Health Care Management and Economics,
DOI 10.1007/978-1-4899-7451-8 3, © The Author 2014
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Arrival process

Waiting room
Service process

Departure process

Fig. 3.1 A simple queue

3.1.1 Performance Measures

Typical measures for the performance of a system include the mean sojourn time,
E[W ], the mean time that a patient spends in the queue and in service. The sojourn
time is a random variable as it is determined by the stochastic arrival and service
processes. The mean waiting time, E[W q], gives the mean time a patient spends in
the queue waiting for service. How E[W ] and E[W q] are calculated depends, among
other things, on the choice for the arrival and service processes, and is given for
several basic queues in Sect. 3.2.

Kendall’s Notation

All queues in this book are described using the so-called Kendall notation:
A/B/s, where A denotes the arrival process, B denotes the service process, and
s is the number of servers. There are several extensions to this notation, see,
for example, [10]. Clearly, there are many distinctive cases of queues:

M/M/1: The single-server queue with Poisson arrivals and exponential ser-
vice times. The M stands for the Markovian or Memoryless property.
M/D/1: The single-server queue with Poisson arrivals and Deterministic ser-
vice times.
M/G/1: The single-server queue with Poisson arrivals and General (i.e., not
specified) service time distribution.

Other arrival processes may also apply: consider, for example, the D/M/1,
G/M/1 and G/G/1 queue. All of the forms above also exist in the case of
multiple servers (s > 1).

3.1.2 Load

The load of the queue is defined as the mean utilization rate per server, which is
the amount of work that arrives on average per time unit, divided by the amount of
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work the queue can handle on average per time unit. Suppose our server is a single
doctor in an outpatient clinic, then the load specifies the fraction of time the doctor
is working. More specifically, the load, ρ , equals the amount of work brought to the
system per time unit, i.e. the patient arrival rate, λ , multiplied by the mean service
time per patient, E[S]:

ρ = λE[S]. (3.1)

The load is the fraction of time the server, working at unit rate, must work to handle
the arriving amount of work. It is required that ρ < 1 (in other words, the server
should work less than 100 % of the time). If ρ > 1, then on average more work
arrives at the queue than can be handled, which inevitably leads to a continuously
growing number of patients in the queue waiting for service, i.e., an unstable system.
Only when the arrival and service processes are deterministic (i.e., the inter-arrival
and service times have zero variance), the load may equal 1.

3.1.3 Relationship Between Mean Waiting Time and Load

The mean waiting time, E[W q], increases with load ρ . As an illustration, consider
a single-server queue with Poisson arrivals and general service times (the so-called
M/G/1 queue), with mean E[S] and squared coefficient of variation (scv) c2

S, which
is calculated by dividing the variance by the squared mean. For this queue, the
relationship between ρ and E[W q] is characterized by the Pollaczek–Khinchine
formula [1]:

E[W q] = E[S]
ρ

1−ρ
1+ c2

S

2
, (3.2)

In Fig. 3.2 the relation is shown graphically for c2
S = 1. We see that the mean waiting

time increases with the load. When the load is low, a small increase therein has a
minimal effect on the mean waiting time. However, when the load is high, a small
increase has a tremendous effect on the mean waiting time. For instance, note that
increasing the load from 50 to 55 % increases the waiting time by 10 %, but increas-
ing the load from 90 to 95 % increases the waiting time by 100 %! This explains why
a minor change (for example, a small increase in the number of patients, a patient
arriving in a bed or a wheelchair) can result in a major increase in waiting times as
sometimes seen in outpatient clinics.

Formulas such as (3.2) allow for an exact and fast quantification of the relation-
ships between (influenceable) parameters and system outcomes. Queuing theory is
a very valuable tool to identify bottlenecks and to calculate the effect of removing
them.
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Fig. 3.2 The relationship between load ρ and mean waiting time E[W q] for the M/M/1 queue
with Poisson arrivals and exponential service times

3.1.4 The Poisson Process

As mentioned before, the Poisson process is commonly used to model the arrival of
customers to a queue and in general to model independent arrivals from a large pop-
ulation. As an example, consider patient arrivals at a hospital emergency department
(ED). They originate from a large population (the demographic area surrounding the
hospital) and usually arrive independently. The probability that an arbitrary person
has an urgent medical problem is very small. Then it can be shown that the arrival
process tends to a Poisson process [2].

The Poisson process is common in real-world processes and has many inter-
esting and for analysis very useful properties. For example, the number of ticks a
Geiger counter records is a Poisson process. This example also indicates that merg-
ing or splitting Poisson processes independently results in Poisson processes, as this
corresponds to joining two lumps of radioactive material or breaking one lump into
parts. Or, for the population example, ED arrivals from a population subgroup (men,
women, children, . . .) are also Poisson.

For a Poisson process, the time between two successive arrivals is exponentially
distributed [11]. A very important property of the exponential distribution is that it
is memoryless: the probability that the inter-arrival time exceeds u+ t time units,
given that it already has exceeded u time units, equals the probability that the inter-
arrival time exceeds t time units. Mathematically, a random variable X that has an
exponential distribution satisfies:

P(X > u+ t|X > u) = P(X > t) , ∀u, t ≥ 0. (3.3)
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We may also rephrase this property as: what happens in the future is independent
of what happened in the past. Because of this Markovian or memoryless property,
the complexity of analyzing systems with this property significantly reduces, as we
show in the subsequent subsections.

3.2 Basic Queues

We now introduce the most commonly used queues: single- and multi-server queues
with Poisson arrivals and exponential or general service times. Unless mentioned
otherwise, we consider the FCFS service discipline and queues with infinite capacity
for waiting patients.

3.2.1 The M/M/1 Queue

In an M/M/1 queue, patients arrive according to a Poisson process with rate λ
and exponentially distributed service requirement with mean service time E[S]. The
service rate per unit time is μ = 1

E[S] , the number of patients that would be completed
per time unit when the system would continuously be serving patients. As denoted
in Sect. 3.1.2, the load of the queue is ρ = λE[S], where it is required that ρ < 1,
that is, the amount of work brought into the queue should be less than the working
speed of the server. The number of patients present in the queue at time t, i.e., those
waiting in line and in service, is obtained from Markov chain analysis.

Let N(t) record the number of patients in the system at time t. Then N =
(N(t), t ≥ 0) is a Markov chain with state space N0 = {0,1,2, . . .}, arrival rate λ ,
which is the rate at which a transition occurs from a state with n patients to a state
with n+1 patients, and departure rate μ from state n to state n−1. We are interested

n -1 n n+10 1 2

Fig. 3.3 Transition rates in the M/M/1 queue
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in the probability Pn that at an arbitrary point in time in statistical equilibrium the
system contains n patients1:

Pn = lim
t→∞

P(N(t) = n). (3.4)

The probability Pn also reflects the fraction of time that the system contains n
patients. The total probability may be seen as an amount of fluid of total volume
1 that is distributed over the states of the Markov chain and flows from state to state
according to the transition rates (for the M/M/1 queue the arrival and departure
rates). The system is in statistical equilibrium when these flows out of state n balance
the flows into state n for each state n, n = 0,1,2, . . . (see Fig. 3.3). Mathematically,
this is expressed as:

λP0 = μP1,

(λ +μ)P1 = λP0 +μP2,

(λ +μ)P2 = λP1 +μP3,

... (3.5)

and in general:

λP0 = μP1,

(λ +μ)Pn = λPn−1 +μPn+1 for n > 0. (3.6)

Since Pn is a probability, the summation of all probabilities Pn, n = 0,1, . . ., should
equal unity:

∞

∑
n=0

Pn = 1. (3.7)

Using Eq. (3.6) and this additional property, we derive the queue length distribu-
tion Pn:

P0 = 1−ρ ,
Pn = (1−ρ)ρn for n > 0. (3.8)

Note that P0, also called the normalization constant, denotes the probability that
there are zero patients present, but also the fraction of time the queue is empty.
Further, ρ is the probability there are one or more patients present, and the fraction
of time the queue is busy.

1 We consider the system in statistical equilibrium only, as is customary in queuing theory. For
the M/M/1 queue, relaxation or convergence to equilibrium usually occurs fast. See [3] for a
discussion on the validity of equilibrium analysis.
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The PASTA Property

In a queuing system with Poisson arrivals, the probability that an arriving pa-
tient finds n patients in the queue is equal to the fraction of time the queue
contains n patients. This property is referred to as PASTA, or Poisson Arrivals
See Time Averages [11].

Usually, queuing systems with non-Poisson arrival processes do not conform
to this property. For example, consider the D/D/1 queue with deterministic
inter-arrival and service times. Time is equally distributed in slots of length
one, and the service time is half a slot. Suppose that at the start of each time
slot a patient arrives (so the inter-arrival time is one slot). Then the queue is
empty upon arrival for all patients, while half of the time the queue contains
one patient.

The mean number of patients in the queue, E[L], including those in service, is
given by:

E[L] =
∞

∑
n=0

nPn =
ρ

1−ρ
. (3.9)

Since ρ is the mean utilization rate of the server, the mean number of patients wait-
ing, E[Lq], equals:

E[Lq] =
ρ

1−ρ
−ρ =

ρ2

1−ρ
. (3.10)

Using a basic result in queuing theory, known as Little’s Law, the relationship
between the mean number of patients in the queue, E[L], and the mean sojourn
time, E[W ], can be explicitly quantified as follows [5]:

E[L] = λE[W ]. (3.11)

This also holds for the relationship between the mean number of patients waiting
for service, E[Lq], and the mean waiting time in the queue, E[W q]:

E[Lq] = λE[W q]. (3.12)

Note that the equilibrium distribution and performance measures are characterized
by the single parameter ρ and can be calculated in a straightforward manner. As we
will see in the subsequent subsections, this is more involved for more complicated
queuing systems.
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Little’s Law

The simple relationship E[L] = λE[W ], presented in 1961 by J.D.C. Little [5],
is known as Little’s Law. It relates the mean number of patients in the queue,
E[L], the average arrival rate, λ , and the mean time the patient spends in the
queue, E[W ].

A common intuitive reasoning for obtaining Little’s Law is the following. Sup-
pose patients pay 1 Euro for each time unit they spend in the queue. On average,
the queue receives E[L] Euro per time unit, since there are on average E[L] pa-
tients present in the queue. Alternatively, if each patient would pay upon enter-
ing the queue for its entire time spent in the queue, a patient would on average
have to pay E[W ] to finance the entire stay. Since each time unit on average λ
patients enter the queue, the amount received by the queue per time unit then
equals λE[W ]. Both methods of payment must result in the same benefit for
the queue, thus E[L] = λE[W ]. The formal proof actually follows the lines of
this reasoning. It is remarkable that Little’s Law requires only mild assump-
tions on the system in equilibrium, and is valid irrespective of the number of
servers, distribution of the arrival and service processes, queuing and service
order. Thus Little’s Law applies to many types of queues.

3.2.2 The M/M/s Queue

The M/M/s queue is the multi-server variant of the M/M/1 queue. Patients arrive
with rate λ , each patient is served by one server and a patient waits in queue when
all servers are occupied. There are s servers so that the maximum service rate of the
queue is sμ , where μ is the service rate of the individual servers. If the number of
patients in the queue, n, is less than the number of servers, s, the service rate equals
nμ (see the transition rate diagram in Fig. 3.4). Again it is required that the amount
of work that arrives per time unit (ρ) is less than the maximum service rate, i.e.,
ρ = λE[S]< s. The equilibrium distribution is obtained from:

λP0 = μP1,
(λ +nμ)Pn = λPn−1 +(n+1)μPn+1 for n < s,
(λ + sμ)Pn = λPn−1 + sμPn+1 for n ≥ s.

(3.13)

Thus

Pn =
ρn

m(n)
P0, (3.14)
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s -1 s s+10 1 2

Fig. 3.4 Transition rates in the M/M/s queue

where

m(n) =

{
n! for 0 ≤ n < s,

sn−ss! for n ≥ s.

(3.15)

Invoking the normalization condition (3.7), we obtain:

P0 =

(
s−1

∑
n=0

ρn

n!
+

ρs

s!
s

s−ρ

)−1

. (3.16)

For s = 1, Eqs. (3.14)–(3.16) reduce to the queue length distribution for the M/M/1
queue (3.8). The probability Ps deserves special attention; this is the fraction of
time all servers are occupied, and because of the PASTA property, also the fraction
of arriving patients that find all servers occupied. Thus the probability that a patient
will be served immediately upon arrival is 1−∑∞

n=s Pn =∑s−1
n=0 Pn, and the probability

that a patient has to wait is ∑∞
n=s Pn. The latter probability can be calculated using

the Erlang-C formula [4]:

Ps+ = P(n ≥ s) =
ρs

s!
s

s−ρ
P0. (3.17)

There are several Erlang-C calculators available online to compute Ps+ , see, e.g.,
[9]. The mean number of patients waiting for service is:

E[Lq] =
∞

∑
n=s+1

(n− s)Pn =
ρ

s−ρ
Ps+ . (3.18)

By applying Little’s Law we find the mean waiting time:

E[W q] =
E[Lq]

λ
. (3.19)

The mean sojourn time is then obtained by adding the mean service time to the mean
waiting time:

E[W ] = E[S]+E[W q]. (3.20)
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The mean number of patients in the queue can be calculated by adding the mean
number of patients in service, ρ , to the mean number of patients waiting [4]:

E[L] = ρ +E[Lq]. (3.21)

3.2.3 The M/M/s/s Queue

The M/M/s/s queue, or Erlang loss queue, is different from the M/M/s queue
in that it has no waiting capacity. Thus when all servers are occupied, patients are
blocked and lost (i.e., they leave and do not come back). This type of queue is very
useful when modeling healthcare systems with limited capacity, where patients are
routed to another facility when all capacity is in use. Examples are nursing wards
and the ICU. Figure 3.5 gives the transition rates for this queue. We obtain:

s -1 s0 1 2

Fig. 3.5 Transition rates in the M/M/s/s queue

λP0 = μP1

(λ +nμ)Pn = λPn−1 +(n+1)μPn+1 for 0 < n < s
λPs−1 = sμPs,

(3.22)

with solution:

Pn =
ρn/n!

∑s
i=0 ρ i/i!

for 0 ≤ n ≤ s, (3.23)

where ρ = λE[S]. Surprisingly, (3.23) also holds for general service times (the
M/G/s/s queue) and is thus insensitive to the service time distribution [4]. The
probability that all servers are occupied is often called the blocking probability and
is given by:

Ps =
ρs/s!

∑s
i=0 ρ i/i!

. (3.24)

Formula (3.24) is often referred to as the Erlang loss formula, or Erlang-B [4]. For
large s, the direct calculation of Ps by using (3.24) often introduces numerical prob-
lems. The following stable recursion exists where these problems are avoided [12].
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Recursion for Erlang-B

Step 1.
Set X0 = 1.

Step 2.
For j = 1, . . . ,s compute

Xj = 1+
jXj−1

ρ
. (3.25)

Step 3.
The blocking probability Ps is given by

Ps =
1
Xs

. (3.26)

Another option is to use one of the Erlang-B calculators available online, see,
e.g., [6, 9]. The performance measures are given by:

E[L] = ρ (1−Ps) , E[W ] = E[S].

(3.27)

As we have seen in this subsection, the computation of the blocking probabilities can
be quite involved. The infinite server, or M/M/∞ queue, is often used to approxi-
mate the M/M/s/s queue for a large number of servers. In this queue, upon arrival
each patient obtains his/her own server. The queue length has a Poisson distribution
with parameter ρ , where ρ = λE[S], and is thus given by

P∞
n =

ρn

n!
P0, where

P∞
0 = e−ρ . (3.28)

The blocking probability for the system with s servers is approximated by Tijms [8]:

Ps ≈
∞

∑
n≥s

P∞
n . (3.29)

3.2.4 Queues with General Arrival and/or Service Processes

For the M/M/s queue a single parameter suffices to calculate the queue length distri-
bution and related performance measures. However, assuming exponentiality of the
distributions involved in a queuing process is not always a valid choice. When the
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coefficient of variation is not close to 1 (the value for the exponential distribution)
other probability distributions should be used to obtain reliable outcomes, since the
variance of the inter-arrival and service times has strong influence on the perfor-
mance measures.

Results for non-exponential systems are scarce and are often characterized via
the scv, c2. In general, when the scv increases, the variability in the related queuing
system also increases. In this subsection we will focus on results for mean waiting
times. Additional results are given in the books [4, 8, 11]. The software package
QtsPlus that accompanies [4] supports the calculation of many relevant performance
measures, is freely available online [7] and implemented in MS Excel, but also has
an open source variant.

For the M/G/1 queue the Laplace–Stieltjes transform for the waiting time distri-
bution is known. From this result, we obtain the Pollaczek–Khinchine formula [1]
that characterizes the waiting time in the single-server queue with Poisson arrivals
and general service times:

E[W q] = E[S]
ρ

1−ρ
1+ c2

S

2
, (3.30)

where c2
S denotes the scv of the service time. The mean sojourn time for the G/M/1

queue is:

E[W ] =
E[S]

1−σ
, (3.31)

where σ is the unique root in the range 0 < σ < 1 of the following equation:

σ = Ā(μ −μσ), (3.32)

with Ā the Laplace–Stieltjes transform of the inter-arrival time and μ = 1
E[S] [11].

For the G/G/1 queue the following approximation solution is often used [8]:

E[W q]≈ E[S]
ρ

1−ρ
c2

A + c2
S

2
, (3.33)

where c2
A denotes the scv of the arrival process. This result includes the G/M/1

queue and is exact for the M/G/1 queue.
It is hard to determine the exact effect of using the exponential distribution to

represent a non-exponential process. As a rule of thumb, we suggest that as long as
the actual variance is below that of the exponential distribution, then the exponential
distribution provides a conservative estimate. In other words, the calculated expec-
tations of the queue length and waiting times will overestimate the actual values.
Such a conservative estimate is, for instance, useful when a strategic decision that
does not involve a lot of detail needs to be made.

For the mean waiting time in the G/G/s queue the following approximation is
very useful [4]:
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E[W q]≈ E[Wq(M/M/s)]
c2

A + c2
S

2
, (3.34)

where E[Wq(M/M/s)] denotes the mean waiting time in the M/M/s queue with iden-
tical λ and μ . In [4] lower and upper bounds on E[W q] are also provided. Using
the results for E[W q], Little’s Law can be applied to determine the mean number of
patients in the queues mentioned in this subsection.

3.3 Service Disciplines

So far, we only discussed the FCFS service discipline. Other options are proces-
sor sharing (PS) and last come first serve (LCFS). In the processor sharing service
discipline, all arriving patients are immediately served, thus there is no queuing.
A single server is shared equally among patients, where each patient class may have
its own service requirement. For the M/M/1−PS queue the queue length distribu-
tion, Pn, is identical to that of the M/M/1−FCFS queue (3.8). Intuitively, this can
be explained as follows. The server works at rate μ , and when there are n patients
in the queue, an individual patient is served with rate μ

n . However, since n patients
are served simultaneously, the overall completion rate is still μ ( μ

n · n = μ). Since
the patient arrival rate equals λ , the flow in and out of the queue is identical to that
of the M/M/1−FCFS queue.

The M/M/1−LCFS queue with preemptive resume can be seen as a stack, for
instance, of patient files, where a single server (the doctor) works on the top item of
the stack. Whenever a new item is added, the server immediately starts working on
this item. However, when the server returns to the previous item, it resumes service
(i.e., the queue is work conserving). The queue length distribution is again given
by (3.8), where the same argument holds as for the M/M/1−PS queue.

References

[1] Cohen JW (1982) The single server queue, 8th edn. North-Holland,
Amsterdam

[2] de Bruin AM, Bekker R, van Zanten L, Koole GM (2010) Dimensioning hos-
pital wards using the Erlang loss model. Ann Oper Res 178(1):23–43

[3] Green LV, Kolesar PJ, Soares J (2001) Improving the SIPP approach for
staffing service systems that have cyclic demands. Oper Res 49(4):549–564

[4] Gross D, Shortle JF, Harris CM (2008) Fundamentals of queueing theory, 4th
edn. Wiley, Hoboken

[5] Little JDC (1961) A proof for the queuing formula L = λW . Oper Res
9(3):383–387



26 3 Basic Queuing Theory

[6] Patient Flow Improvement Center Amsterdam (2011) Erlang-B cal-
culator. www.vumc.nl/afdelingen/pica/Software/erlang_b/.
Retrieved 9 Dec 2011

[7] QtsPlus software, available at ftp://ftp.wiley.com/public/sci_
tech_med/queueing_theory/

[8] Tijms HC (2003) A first course in stochastic models. Wiley, Chichester
[9] Westbay Online Traffic Calculators (2011) Erlang-B calculator. www.

erlang.com/calculator. Retrieved 9 Dec 2011
[10] Winston WL (1994) Operations research: applications and algorithms, 3rd edn.

Duxbury Press, Belmont
[11] Wolff RW (1989) Stochastic modeling and the theory of queues. Prentice Hall,

Englewood Cliffs
[12] Zeng G (2003) Two common properties of the Erlang-B function,

Erlang-C function, and Engset blocking function. Math Comput Model
37(12–13):1287–1296

[13] Zonderland ME, Boucherie RJ (2012) Queuing Networks in healthcare sys-
tems. In: Hall RW (ed) Handbook of healthcare system scheduling. Springer,
New York

www.vumc.nl/afdelingen/pica/Software/erlang_b/
ftp://ftp.wiley.com/public/sci_tech_med/queueing_theory/
ftp://ftp.wiley.com/public/sci_tech_med/queueing_theory/
www.erlang.com/calculator
www.erlang.com/calculator


Chapter 4
Access Time and Waiting List Management

Using the queuing theory results introduced in the previous chapter, a few simple
relationships are described which provide a deeper insight in access time and
waiting list management. For simplicity, weeks are chosen as time unit. This can be
any other time unit, such as days, years, and hours, as long as the same time unit is
used for each variable. Simple formulas originating from the M/M/1 queue are used
in order to provide the reader with a deeper understanding of access time and wait-
ing list management. In literature, other queuing models can be used for waiting list
management as well (see, e.g., [3] where the waiting list for liver transplants is mod-
eled using a G/M/1 queue). To explain the important relationship between waiting
lists and facility occupation this chapter starts with the concept of occupation.

4.1 Occupation of a Resource

Using the notation introduced in Chap. 3, recall that we define λ as the number
of patients calling for an appointment on average per week (e.g., patient arrivals),
and μ as the number of patients that can be seen per week (e.g., the service rate).
The occupation of a resource, ρ , is then given by:

ρ =
λ
μ
. (4.1)

This means that a fraction ρ of available capacity is used, so a fraction 1− ρ of
capacity is not used. To avoid unused capacity, many hospital planners and managers
tend to provide an amount of capacity (i.e., appointment slots) which is equal to the
average number of patients arriving each week. In this case ρ = 1, or 100 %. From
queuing theory it is known that ρ , in case of variance in the patient arrival and/or
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service processes,1 should be < 1, to avoid an explosion in waiting time (see also
Fig. 3.2). Figure 4.1 shows an example of the evolution of a waiting list in case
ρ = 1. It shows clearly that the offered capacity is not sufficient if μ ≤ λ ; instead,
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Fig. 4.1 Planning on the average number of arriving patients; evolution of the waiting list for
λ = μ = 5 (ρ = 1) over a period of 200 weeks, starting with an empty waiting list

μ > λ and thus ρ < 1. Figure 4.2 shows an example of the evolution of the waiting
list in case ρ = 0.83 or 83 %. In this example the size of the waiting list is bounded;
however, on average 17 % (100−83 %) of capacity is unused.

The challenge is to make a trade-off between maintaining a waiting list which
is of acceptable size and the amount of unused capacity. Since the focus in many
healthcare facilities is on avoiding unused capacity, waiting lists tend to grow until
“something has to be done.” Then, temporarily surplus capacity is deployed, which
is usually more expensive than regular capacity, due to the usage of extra (temporar-
ily hired) staff and working outside office hours. Even though waiting lists have
a buffer function (i.e., by creating a reservoir of patients that can be planned when
demand is low) it is unavoidable that, even in well-organized facilities, over a longer
period of time not all capacity is used.

4.2 Access Time and Size of the Waiting List

For the M/M/s queue the average access time, E[W q], which is the time a patient
spends on the waiting list, is given by:

1 This means the number of weekly patient arrivals is not constant and/or the actual service time is
not exactly the same for each patient.
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Fig. 4.2 Offering more capacity than the average number of arriving patients; evolution of the
waiting list for λ = 5, μ = 6 (ρ = 0.83) over a period of 200 weeks, starting with an empty
waiting list. In this example the average access time equals 0.83 weeks, the average size of the
waiting list is 4.17 patients and 17 % of capacity is unused

E[W q] =
1
μ

ρ
1−ρ

=
λ

μ(μ −λ )
. (4.2)

The size of the waiting list (given in the number of patients), E[Lq], is calculated by
multiplying the access time by the patient arrival rate, λ , and thus given by:

E[Lq] = λE[W q] =
ρ2

1−ρ
=

λ 2

μ(μ −λ )
. (4.3)

Often the maximum access time is defined. Then the number of appointments to
offer per week, μ̃ , can be calculated using:

μ̃ =

⌈
λW̃ q +

√
(λW̃ q)2 +4λW̃ q

2W̃ q

⌉
, (4.4)

where W̃ q represents the maximum access time and �x� equals x rounded up to the
nearest integer.

Sometimes standards are set by governmental institutions regarding the access
time, such as: X % of patients should be seen within t1 weeks, and 100 % of patients
should be seen within t1 + t2 weeks. In the Netherlands, X = 80 % for regular out-
patient clinic appointments, t1 = 3 weeks and t2 = 1 week (this is the so-called
Treeknorm2). In practice such standards are hard to maintain and evaluate. Some
patients prefer a longer access time, while for other patients a longer access time is
required from a medical perspective. Whether these patients should be included in
access time calculations is often unclear. Furthermore, it is notoriously difficult to

2 www.treeknormen.nl.

www.treeknormen.nl


30 4 Access Time and Waiting List Management

determine the starting point of the reference period. Consider, for instance, waiting
time for surgery; does it start when the patient is first seen by a doctor or when the
patient is fully prepared (diagnostic testing, anesthesia check-up, and so on com-
pleted) for surgery? As a result, hospitals tend to make up their own definitions,
which makes it impossible for patients to compare hospitals on meeting their access
time standards.

However, a standard such as X % of patients should be seen within t1 weeks, can
be evaluated using the following formula [1]:

P(T ≤ t1) = 1−ρe−μ(1−ρ)t1 , (4.5)

where e is the base of the natural logarithm and P(T ≤ t1) represents the probability
that the access time is smaller than or equal to t1. Due to the Pasta property (see
Chap. 3) the latter probability equals the percentage of patients with an access time
smaller than or equal to t1. If P(T ≤ t1)≤ X , then the standard is satisfied.

Example: Suppose t1 = 3 weeks, ρ = 0.9 and μ = 10, then the fraction of patients
that has an access time of at most 3 weeks equals:

P(T ≤ 3) = 1−0.9e−10(1−0.9)3

= 1−0.9e−3

= 0.9552. (4.6)

So in this case almost 96 % of patients has an access time of at most 3 weeks. Note
that P(T ≤ 4) = 0.9835, so the “100 % of patients within four weeks” requirement
is not satisfied, even though a large part of patients is seen within 3 weeks.

One of the most important goals of this chapter is to show that it is impossible
to use all capacity and at the same time maintain a short, manageable waiting list.
A common mistake is to reason as follows:

Suppose total capacity is 100 appointments. Unused capacity is commonly used for urgent
and inpatients, that can be called in last minute. 83 % of capacity is used, so there is on
average 17 % of capacity available for urgent and inpatients. The urgent/inpatient demand
is on average 20 apointments per day. Since 17 appointments are on average not used for
elective patients, a surplus capacity of only three appointments is required to satisfy all
patient demand.

Even though this is true on average, more urgent and inpatient capacity is
required. This is due to the variation in the process; on certain days 100 % of
capacity is required to satisfy elective patient demand, thus leaving no room for
any other patients. Furthermore, since 17 slots are dedicated to urgent and inpa-
tients, only 83 slots are available for elective patients, which means that ρ is again
equal to 1, resulting in an uncontrollable waiting list.

In the case where part of capacity is used for urgent and inpatients, the mean
access time can be calculated using a non-preemptive priority M/M/1 model [2]. In
this model urgent and inpatients are given priority over elective patients, but elec-
tive patient treatment is finished once it has started (the non-preemptive property).
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Let λe represent elective patient demand, λu urgent patient demand and λi inpatient
demand. Assume that urgent and inpatients, if present, are served immediately when
treatment of an elective patient is completed. Then,

ρe =
λe

μ

ρu,i =
λu +λi

μ
ρ = ρe +ρu,i, (4.7)

where ρe and ρu,i is the fraction of time the resource spends on elective, urgent and
inpatients resp. and ρ is the occupation for the entire facility. The mean access time
for elective, E[W q

e ], resp. urgent and inpatients, E[W q
u,i], is given by:

E[W q
e ] =

ρ
μ

(1−ρ)(1−ρu,i)

E[W q
u,i] =

ρ
μ

(1−ρu,i)
.

(4.8)

4.3 Practical Issues

In this section several practical issues related to access time and waiting list man-
agement are discussed.

4.3.1 Extremely Long Waiting Lists

If a facility has an extremely long waiting list, an intervention is required before a
suitable appointment system can be designed. First it is important to check whether
the waiting list is increasing or is more or less stable. If the waiting list is long and
still growing, there is an urgent lack of capacity. Next to calculating the required
capacity, it should then also be studied whether available capacity can be used more
efficiently. Also, temporary additional capacity should be deployed to decrease the
size of the waiting list. If the waiting list is stable, it can be concluded that the avail-
able capacity is sufficient. However, somehow a backlog of patients evolved over
time. In this case additional capacity should be temporarily added to minimize the
backlog. Furthermore, the causes of the backlog should be studied, in order to avoid
this type of congestion in the future.
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4.3.2 Long Waiting Lists and Decrease in Demand

Quite often a long waiting list results in a decrease in demand, especially in densely
populated areas where patients can choose between various healthcare providers.
The positive side of this is that a natural way of waiting list management occurs.
However, from a marketing perspective losing patients to other providers is an
undesired side effect. A related effect is that facilities who just minimized their
waiting list find themselves in a situation with fast increasing patient demand,
insufficient capacity and again, an increasing waiting list. It is very hard to influ-
ence these phenomena.

4.3.3 Identification of Patient Groups

Some planners tend to maintain separate waiting lists for each patient group. How-
ever, if capacity is shared among these groups, the waiting list should be considered
as a whole as well. Allocating capacity per patient group usually results in inflexi-
bility and poor performance, which will be discussed in Chap. 5.

4.3.4 Dealing with Seasonality

Most patient demand is influenced by the time of year. Some patients do not prefer
to receive surgery in summer, during winter more people have a cold, if it freezes
more people have ice skating accidents and so on. It is impossible to account for all
of these influences, but still, if possible the appointment system should be adapted.
This means, for example, that if required, more capacity should be offered outside
summer and less capacity during the summer holidays. A proper analysis of patient
demand and its fluctuations will result in a balanced yearly workload.
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Chapter 5
Scheduling Appointment Slots

Using the results provided in the previous chapter, the number of appointments to
offer each week can be calculated. This chapter describes how these appointments
can be distributed over the week and subsequently over the day.

5.1 Identifying Patient Groups

Usually, patient groups evolve more or less naturally. It is, however, good to recon-
sider these groups now and then. Natural differentiations usually based on specialty,
care provider, urgency, and admission status. Sometimes, a (partial) diagnosis or
complaint type is also incorporated, for example in specific consultation hours for
hip replacement in Orthopedics or hand surgery in Plastic Surgery. For each patient
group that requires dedicated consultation hours which cannot be shared with other
patient groups, the number of appointments per week should be determined using
formula (4.4). Patient groups which can share capacity can be taken together, sub-
sequently also formula (4.4) can be used to calculate the number of appointments
per week for this aggregated group. The next section provides an example of these
calculations.

5.2 Introducing Appointment Slots

Specific patient groups require different appointment lengths. This relates to sub-
distributions which can be made within a patient group, for example among new
and check-up patients. In order to calculate the required appointment time for a
patient group, appointment slots are introduced. These slots are blocks of time, equal
to or a fraction of the length of all possible consultations. Note that it should be
possible to express the length of all possible consultations as a multiple of the chosen
slot length.
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Thus, the required weekly capacity, CI , for a certain patient group, expressed in
minutes, equals

CI =

⌈
μ̃IT ∑

i∈I
fini

⌉
, (5.1)

where fi is the fraction of subgroup i within patient group I, requiring ni slots of
length T minutes.

Example: Suppose a clinic has two elective Orthopedic patient types: hip and knee
patients. An aggregated patient group, consisting of the hip and knee patients, is
created, for which the average access time should equal 2 weeks. Since both patient
types are either new or check-up patients, there are actually four subgroups:

1. New hip patients, f1 =
3
8 , n1 = 2

2. Check-up hip patients, f2 =
5
8 , n2 = 1

3. New knee patients, f3 =
2
5 , n3 = 2

4. Check-up knee patients, f4 =
3
5 , n4 = 1

The slot length T = 10 min, and the total appointment demand per week λ = 18
patients. Since W̃q = 2 weeks, the number of appointments to offer per week is
equal to [recall (4.5)]:

μ̃ =

⌈
18 ·2+

√
(18 ·2)2 +4 ·18 ·2

2 ·2

⌉
= 19. (5.2)

The required weekly capacity in minutes equals:

CI =

⌈
19 ·10(2(

3
18

+
4
18

)+1(
5
18

+
6
18

))

⌉
= 264. (5.3)

Subsequently, the weekly capacity should be divided over the days of operation
of the clinic. When doing this, be aware of other processes using the same resource;
it is not a good idea to have all doctors working at an outpatient clinic at the same
day, since this will result in a high load for both administrative and infrastructural
resources.

5.3 Allocation of Slots to Specific Patient Groups

Sometimes it is required to allocate slots to specific patient groups. In this case
arrangements regarding the usage of this capacity can be made. For example,
appointment slots within this week, which are allocated to semi-urgent patients
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but not claimed yet, can be filled with elective patients. Urgent slots allocated to-
day, but not claimed yet can be filled with inpatients and so on. If it is necessary
to allocate appointment slots to specific patient types (for example, because it is
medically required), plan these blocks in the middle of the day and plan patients in
consecutive order, so that unused capacity can be incorporated in regular capacity
again.



Chapter 6
Specific Appointment Systems

In this chapter three specific appointment systems are briefly discussed, which may
be of interest for outpatient clinics with certain characteristics.

6.1 Walk-In

In a walk-in system, patients are seen without an appointment. They can literally
just “walk in” at the outpatient clinic or diagnostic facility. The main advantage
of walk-in systems is that access time is reduced to zero. Furthermore, patients
have more freedom to choose the date and time of their hospital visit. However,
due to the usually inhomogeneous patient arrival patterns, long waiting times can
emerge, together with low utilization of the facility at other points in time. In regular
appointment systems workload can be dispersed, although appointment planning is
usually time consuming. A walk-in system is most suitable for clinics with short
service times and multiple care providers, such as blood withdrawal facilities and
pre-anesthesia check-ups for non-complex patients. If the service times are longer
or the number of care providers is limited, the probability that patients experience
a long waiting time becomes too high, and a regular appointment system would be
justified; consider, for example, a Radiology department with two MRI scanners and
an average scan time of 30–45 min. With four patients already waiting, the waiting
time for a new patient is at least 1 h.

6.1.1 Combining Walk-In and Appointments

Sometimes it is impossible to provide walk-in service for all patients, for example
when specific patients need to be prepared for their consultation, or if specific
care providers are required, such as anesthesiologists. Also, walk-in patients who
experience a full waiting room upon arrival may choose to come back at a later point
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in time. To make sure that they do have access at that point, clinics usually give these
patients an appointment. This combination of walk-in and appointment patients
requires a specific appointment system that satisfies the following requirements:

1. The access time for appointment patients is below a certain threshold
2. The waiting time for walk-in patients is below a certain threshold
3. The number of walk-in patients who are sent away due to crowding is minimized

To satisfy these requirements, an appointment system should be developed to
determine the optimal scheduling of appointments, not only on a day level but
also on a week level. Developing such an appointment system is challenging from
a mathematical perspective. The interested reader is referred to [3] for further
reference.

6.2 Advanced Access

Advanced access was first described by Dr. Murray [5]. The basic aim of this
methodology is to minimize access time (“do today’s work today”), by allocating a
part of capacity to patients who call in for an appointment the same day or within
a few days. The challenge is to determine which part of capacity should be dedi-
cated to these advanced access patients, and which part to patients who require an
appointment in the long term. By maximizing the number of patients who are seen
within this short time span, access times are minimized. See the articles [2, 4, 6, 7]
for further reference.

6.3 Care Pathways

A care pathway is a management tool which helps to organize, usually multidisci-
plinary, care for patients with identical characteristics, such as disease symptoms,
age, and diagnosis. The care pathway specifies all steps in the care process [1]
and describes the patient’s routing among different care providers and departments.
Since the 1990s many healthcare organizations have used care pathways to stan-
dardize patient care. Another common goal is reducing the patient’s length of stay.

Usually, the appointments for care pathway patients are planned within the
department’s regular appointment systems. However, in order to achieve the afore-
mentioned short length of stay, usually specific slots are allocated to these patients.
The previous chapter has discussed the disadvantages of this working routine in
detail. Additionally, prioritizing care pathway patients in an otherwise walk-in clinic
may result in long waiting times for walk-in patients (see [8] for further reference).



References 39

References

[1] Allen D (2009) From boundary concept to boundary object: the practice and
politics of care pathway development. Soc Sci Med 69(3):354–361

[2] Dobson G, Hasija S, Pinker EJ (2011) Reserving capacity for urgent patients in
primary care. Prod Oper Manag 20(3):456–473

[3] Kortbeek N, Zonderland ME, Braaksma A, Vliegen IMH, Boucherie RJ, Litvak
N, Hans EW (2011) Designing cyclic appointment schedules for outpatient
clinics with scheduled and unscheduled patient arrivals. Memorandum 1968,
Department of Applied Mathematics, University of Twente, Enschede, The
Netherlands

[4] Liu N, Ziya S, Kulkarni VG (2010) Dynamic scheduling of outpatient
appointments under patient no-shows and cancellations. Manuf Serv Oper
Manag 12(2):347–364

[5] Murray M, Berwick DM (2003) Advanced access: reducing waiting and delays
in primary care. J Am Med Assoc 289(8):1035–1040

[6] Qu X, Shi J (2009) Effect of two-level provider capacities on the performance
of open access clinics. Health Care Manag Sci 12(1):99–114

[7] Qu X, Rardin RL, Williams JAS, Willis DR (2007) Matching daily healthcare
provider capacity to demand in advanced access scheduling systems. Eur J Oper
Res 183(2):812–826

[8] Zonderland ME, Boucherie RJ, Al Hanbali AM (2011) Appointments for care
pathway patients: the Geox/D/1 queue with slot reservations. Memorandum
1961, Department of Applied Mathematics, University of Twente, Enschede,
The Netherlands



Chapter 7
Improving Clinic Operations

Now all the theoretical foundations for designing appointment systems have been
laid, five golden rules for appointment planning are given. Also, management
philosophies such as lean manufacturing are briefly addressed. This chapter con-
cludes with an example project, which was carried out at Leiden University Medical
Center (a teaching hospital in the Netherlands) in order to reduce workload and
patient waiting times at the pre-anesthesia evaluation clinic (PAC).

7.1 Golden Rules for Appointment Planning

In the previous chapters many methods and tools related to appointment planning
were discussed. Important insights following from this theoretical foundation are
summarized in the following five golden rules for appointment planning.

Golden Rule 1: A Small Buffer Helps to Use Capacity Efficiently, But Do
Not Exaggerate. A sometimes used euphemism for waiting time is “appointment
buffer.” In a way this is true; having a list with spare patients to plan gives flexibility
and enables the planner to efficiently use resources. However, this may not be an
excuse to maintain reservoirs of patients who will experience extremely long access
times. This is patient unfriendly and may result in complications and a longer care
trajectory.

Golden Rule 2: Do Not Plan All Incoming Patient Demand Immediately, But
Try to Smooth It over the Upcoming Period. Try to find patterns in patient
arrivals. Use these patterns to determine required capacity, but try not to overbook
patients. Ad hoc creation of extra capacity will result in unused capacity in the
future.

Golden Rule 3: Only Use Dedicated Slots If It Is Medically Required. Other-
wise, Aim To Be as Flexible as Possible. Dedicated slots result in inflexibility and
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suboptimal planning. Keep this in mind every time a request for dedicated slots is
made (most likely, this will be quite often).

Golden Rule 4: Try to Balance Weekly, Daily, and Hourly Workload. A Small
Change in Workload Can Have a Major (Positive or Negative) Effect. Balanc-
ing workload is extremely important. Unused capacity cannot be regained, while ad
hoc deployment of surplus capacity will in the long term result in an over strained
system.

Golden Rule 5: When a New Care Provider Is Appointed, Determine Which
Days and Part of the Day Are Most Suitable to Plan Appointments, in Order
to Further Balance Workload. In line with the previous rule, this is an easy way
to balance workload, since at this stage the new care provider does not yet have an
agenda with multiple obligations.

7.2 Management Philosophies

Lately, many processes in healthcare have been intensely studied using management
philosophies which originate from industry. An important application area for these
philosophies is outpatient clinics and nursing wards. Examples include, but are not
limited to: improving administrative processes, reducing patient waiting times, and
reducing the amount of required staff. Common used techniques are, for example,
lean management, six sigma, theory of constraints, and statistical process control.
There are numerous resources available on the Internet discussing the merits of
these techniques, therefore they are not discussed in detail in this book. What they
do have in common is their aim: the reduction of variance in the process. By making
a clear process description and determining (and eliminating) sources of variance,
process outcomes such as patient length of stay, waiting and access times can be
reduced significantly. However, a drawback of using such well-defined philosophies
is that many healthcare organizations forget that most of their problems could also
be solved using common sense and simple principles, such as those discussed in the
previous paragraph.

7.3 Example Project: Redesign of a Pre-anesthesia
Evaluation Clinic

This example is based on [5]. It shows how a relatively simple queuing model is used
to improve the operations of a pre-anesthesia evaluation clinic at Leiden University
Medical Center in the Netherlands.



7.3 Example Project: Redesign of a Pre-anesthesia Evaluation Clinic 43

7.3.1 The Problem

We consider a PAC. At this clinic, which is operated by the Department of Anes-
thesiology, patients are screened before elective surgery. In the last decades most
hospitals have organized this screening in an outpatient setting. Not only will a
well-performed screening reduce the surgical risk for the patient, but also it reduces
the number of canceled surgeries due to the physical condition of the patient [3].
Initially, the screening process at the PAC was organized as follows. Four anes-
thesia care providers performed the actual screening, supported by a secretary and
two clinic assistants. The screening consisted of several separate medical and ad-
ministrative tasks. The majority of patients (70 %) would be screened directly after
their consultation at the surgeon’s outpatient clinic. This direct (walk-in) screening
would only be possible for non-complex patients with ASA I & II classification
[1], patients with a more severe health status (ASA III & IV classification) would
receive an appointment, since additional medical information and a longer consulta-
tion time was required. An increased staff workload, resulting from the introduction
of an electronic patient data management system, led to lower job satisfaction, work
stress, and prolonged patient waiting times. Although 90 % of the annual 6,000
PAC patients were eligible for walk-in, one third of these patients were seen on
appointment basis, due to an overcrowded waiting room when they first presented
themselves at the PAC.

7.3.2 The Model

To identify bottlenecks in the PAC’s operations, the clinic was modeled as a multi-
class open queuing network (see Fig. 7.1). There were three patient classes: children,
adults eligible for direct (walk-in) screening, and adults requiring an appointment
because of their (more severe) health status. The PAC queuing network has three
separate (connected) queues, where the employees act as servers. Patients only enter
the PAC through the secretary queue, but may leave the system at any queue. The
PAC queuing network was analyzed using a decomposition method, based on the
QNA. This method consists of three steps. We first summarize the method and then
provide a detailed description of the model with the corresponding formulas.

First, the multi-class network is reduced to a single class network. This is done by
aggregating all patient flows that enter a queue. Then the workload ρ is calculated
for each queue. This already gives significant and valuable information; recall that ρ
is a measure for the fraction of time employees are busy. In the next step, the single
class open queuing network is analyzed, where the mean contact time and scv of the
joint arrival and service processes at the three queues are deduced. In the final step
the mean waiting time per queue is calculated, using the variables that were derived
in steps 1 and 2.

In the initial analysis of the PAC queuing network, it was found that the secre-
tary and anesthesia care providers functioned as bottlenecks. Consequently, several
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Fig. 7.1 Queuing network representation of PAC

alternatives were formulated together with clinic staff, in order to remove these bot-
tlenecks. All alternatives were evaluated using the queuing network model, result-
ing in one alternative that outperformed the others. In this alternative, several tasks
were redistributed and the patient arrival process was amended such that the arrivals
were spread more equally over the day. In the year following the implementation
of the alternative clinic design, patient arrivals increased (unexpectedly) by 16 %.
In the old situation, this would likely have resulted in even longer patient waiting
times (recall Fig. 3.2). However, the mean patient length of stay at the PAC did not
increase significantly, and more patients (81 %) were offered the direct screening.

Detailed Description of the Decomposition Method

The PAC queuing network consists of three queues. The secretary queue is a
single-server queue whereas the clinic assistant and anesthesia care providers are
represented by multi-server queues. Patients enter the queuing network via the sec-
retary queue and depart the system from any of the queues. Furthermore, if upon
arrival at a queue an employee is available, patients are served immediately; other-
wise, they join the queue and are treated on first come first serve basis. We use an
approximate decomposition method [2] that is based on the queuing network ana-
lyzer (QNA), developed by Ward Whitt [4], to analyze the model. The model we
will present here is more involved than the initial QNA formulation. Practical situa-
tions can usually not be directly translated into an existing model. Instead, the theory
has to be amended and extended to represent reality. We will describe in detail the
changes we have made to the QNA algorithm.
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First we introduce some notation. There are k distinct patient classes, where k = 1
are patients deferred to an appointment by the secretary, k = 2 adults with ASA I or
II, k = 3 adults with ASA III or IV, and k = 4 are children. To evaluate the alterna-
tive clinic design, we also introduce k = {5,6,7} to represent patients (adults with
ASA I or II, adults with ASA III or IV, and children, respectively) who return for
their appointment. We have j queues, j = 1,2,3, representing the secretary, clinic
assistant, and anesthesia care provider.

Step 1.
The aggregated arrival rates at queue j are:

λ1 =
4+3d

∑
k=1+d

γk, λ2 =
3

∑
k=2

γk, λ3 =
4

∑
k=2

(1−dak)γk +d
7

∑
k=5

γk, (7.1)

where γk is the arrival rate of patient class k at queue 1, and ak is the fraction of
patients of class k who are deferred to an appointment in the alternative clinic design.
Since the indices k = {5,6,7} only exist when the alternative clinic design is eval-
uated, we introduce the binary variable d, which equals 1 if the alternative clinic
design is evaluated and 0 otherwise.

Step 2.
The load per patient class per server for queue 1,2, and 3 is:

φ1,k = γkE[Sk,1]
1

e1s1
for k = {1+d, . . . ,4+3d},

φ2,k = γkE[Sk,2]
1
s2

for k = {2,3},
φ3,k = γkE[Sk,3]

1
e3s3

+d(1−ak)γkE[Sk,3]
1

e3s3
for k = {2, . . . ,4+3d},

(7.2)

where E[Sk, j] is the mean service time for patient class k at queue j. Since the sec-
retary is often consulted by other patients and coworkers while handling a patient
at the reception desk, an effective capacity e1, 0 < e1 ≤ 1, is taken into account
when calculating the mean time a patient spends at this queue. The anesthesia care
provider is often disturbed, but not while treating patients and therefore the effective
capacity, e3, 0 < e3 ≤ 1, is only used in calculating the load. These effective capac-
ities are calculated by using direct observations and interviews with the employees.
The number of servers (i.e., employees) at queue j equals s j. Adding the load over
all patient classes gives the aggregated load per server of queue j, j = 1,2,3:

φ1 =
4+3d

∑
k=1+d

φ1,k, φ2 =
3

∑
k=2

φ2,k, φ3 =
4+3d

∑
k=2

φ3,k. (7.3)

For stability it is required that φ j < 1 for all queues j.
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Step 3.
The flow from queue 1 to queue 2 or 3 and from queue 2 to queue 3 is given by:

λ1,2 =
3

∑
k=2

(1−dak)γk

λ1
, λ1,3 =

∑4+3d
k=4 (1−dak)γk

λ1
, λ2,3 =

3

∑
k=2

(1−dak)γk

λ2

(7.4)

The fraction of arrivals at queue 3 that come from queue 1 or 2 is given by (note that
q1,2 = 1):

q1,3 =
∑4+3d

k=4 (1−dak)γ4

λ3
, q2,3 =

3

∑
k=2

(1−dak)γk

λ3
. (7.5)

Step 4.
The arrival process at queue 1 has scv, c2

A,1:

c2
A,1 = w1

4+3d

∑
k=1+d

Qk,1c2
A,k,1 +1−w1, (7.6)

where c2
A,k,1 is the scv of the arrival process of patient class k at queue 1, and

w1 =
(
1+4(1−φ1)

2(η1 −1)
)−1

, η1 =
λ 2

1

∑4+3d
k=1+d γ2

k

, Qk,1 =
γk

λ1
. (7.7)

The mean service time, E[S1] and scv at queue 1, c2
S,1, are:

E[S1] =
∑4+3d

k=1+d γkE[Sk,1]

λ1
, c2

S,1 =
∑4+3d

k=1+d γkE
2[Sk,1](c2

S,k,1 +1)

λ1E
2[S1]

−1, (7.8)

where c2
S,k, j is the scv of the service time for patient class k at queue j. The arrival

process at queue 2 has scv, c2
A,2:

c2
A,2 = λ1,2c2

D,1 +1−λ1,2, (7.9)

where c2
D,1 is the scv of the departure process at queue 1. Queue 2 has mean service

time, E[S2], and scv, c2
S,2:

E[S2] =
∑3

k=2 γkE[Sk,2]

λ2
, c2

S,2 =
∑3

k=2 γkE
2[Sk,2](c2

S,k,2 +1)

λ2E
2[S2]

−1. (7.10)
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The arrival process at queue 3 has scv, c2
A,3:

c2
A,3 = w3(q2,3c2

2,3 +q1,3c2
1,3)+1−w3, with

w3 =
(
1+4(1−φ3)

2(η3 −1)
)−1

, η3 =
(
q2

2,3 +q2
1,3

)−1
,

c2
1,3 = λ1,3c2

D,1 +1−λ1,3, c2
2,3 = (1−d)c2

D,2 +d(λ2,3c2
D,2 +1−λ2,3),

c2
D,2 = 1+(1−φ 2

2 )(c
2
A,2 −1)+

φ 2
2√
s2
(c2

S,2 −1), (7.11)

where c2
2,3 is the scv of the patient flow from queue 2 to queue 3, c2

1,3 the scv of the
patient flow from queue 1 to queue 3, and c2

D,2 is the scv of the departure process at
queue 2. Queue 3 has mean service time, E[S3], and scv, c2

S,3:

E[S3] =
∑4

k=2(1−dak)γkE[Sk,3]

λ3
+d

7

∑
k=5

γkE[Sk,3],

c2
S,3 =

∑4
k=2(1−dak)γkE

2[Sk,3](c2
S,k,3 +1)+∑7

k=5 γkE
2[Sk,3](c2

S,k,3 +1)

λ3E
2[S3]

−1.

(7.12)

Step 5.
We are interested in the waiting times for patients per queue and the load per
employee at each queue. The latter is given by the aggregated load derived in step 1,
while the mean waiting times are obtained by using the scv and mean service time
calculated in step 2. The mean waiting time, E[W q

j ], is equal for all patient classes.

E[W q
1 ] =

c2
A,1 + c2

S,1

2
φ1

1−φ1

E[S1]

e1
,

E[W q
j ] =

c2
A, j + c2

S, j

2
E[W q

j(M/M/s)], where

E[W q
j(M/M/s)] = G−1

j
(s jφ j)

s j

s j!
E[S j]

s j(1−φ j)2 ,

G j =
s j−1

∑
n=0

(s jφ j)
n

n!
+

(s jφ j)
s j

(1−φ j)s j!
for j = 2,3. (7.13)

Patient length of stay for each patient class can now be calculated by adding the
mean waiting and length of stay of all queues the patient calls at on his/her visit to
the PAC.
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Chapter 8
Challenges in Appointment Planning

Next to the numerous challenges discussed in the previous chapters of this book,
three fundamental challenges, which will be increasingly important in the near
future and are important with respect to appointment planning, are outlined in this
chapter.

8.1 The Healthcare Challenge

Lately, a transition from inpatient to outpatient care has emerged. Medical inno-
vations lead to less invasive treatments, thus a faster recovery of the patient is
established. These technical innovations also allow for an increase in possibilities
for home care. As a result, the length of stay at nursing wards has decreased dra-
matically during the last two decades. Next to that, there is a tendency to organize
relatively simple procedures in separate, usually commercial clinics. These two de-
velopments together will ultimately lead to two types of healthcare providers: clinics
where only elective, standardized and profitable care is given, and specialized, high
care clinics where urgent, complicated and usually expensive care is provided. Both
types of healthcare providers require their own planning methodology, where the de-
velopment of appointment systems for specialized clinics deserves special attention.

8.2 The Mathematical Modeling Challenge

Usually the development of an appointment system is an activity which is done
not very often, at most once a year. Also, most mathematical models which are
developed to solve a problem are usually used only once (for example, the queuing
model in Sect. 7.3). One of the biggest challenges for operations research profes-
sionals is to develop mathematical models which are dynamic in such a way that
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new, but related problems can be tackled relatively easily, and such that users feel
an urge to immediately “grab” the model when a new problem arises.

From a more technical perspective, more research work has to be done in
order to optimize appointment planning when several departments are involved (for
example, in care pathways), just as in optimal usage of resources which serve mul-
tiple patient types (for example, an MRI scanner where urgent patients need to be
scanned as soon as possible and elective patients demand a short waiting time).

8.3 The Software Challenge

It is common that hospitals use relatively simple software to plan patients, which is
actually nothing more than a digital agenda. It might even be very hard to change
the blueprint of the appointment planning or change the length of appointment slots.
Planning optimal sequences of appointments or determining the optimal combi-
nation of several appointments for one patients on (part of) a single day is often
quite difficult, or even impossible. A good appointment planning is supported by a
well-developed information system, thus this is a challenge for both hospitals and
software developers.

Next to that, the availability of management information is crucial to be in control
and to improve processes. The amount of data that is recorded during patient’s
care trajectories is increasing rapidly. This information should not only be used
for administrative purposes, but also to measure process-related outcomes, such
as patient’s access and waiting time, and resource occupation. This knowledge is
the first step to a patient-friendly environment where hospital resources are used
efficiently at the same time.
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